” Allied Vision

APPLICATION NOTE

Using the Goldeye G/CL look-up table (LUT)
for image processing OS2

Introduction

This application note explains how to use look-up tables (LUTs) for image processing. The Goldeye camera
family provides four pre-configured and four user-configurable LUT files.

Basics about LUTs

A LUT is used to remap pixel counts. For every possible pixel value (e.g. [0:16383] for 14 bit) within the LUT
a target value exists where the pixel value is mapped to.

. 10665 | 15612 | 5718 10665 | 16383 | 12500

mmp | 3159 [12335]16383 | mmmp | LUT | mmmp | 9950 [10665| 1500 | mmmp -

0 8159 | 10665 5525 | 9950 | 10665 .

LUT
From 0 1 2 | *> | s71g | > | 8159 | * | 10865 |+ > 12335 | *| 15612 | * | 16383
To | 5525 | 5510 | 5506 | * | 12500 | o * | s950 | * | 10865 |-+ + | 10665 |- *| 16383 | - + | 1500

Figure 1: LUT applied to a set of pixels

The LUT consists of a series a; of 2% (= 16384) count values, therefore the mapping is defined to map each
pixel of value 1 to value a;.

Expressed in pure mathematically terms: May (a;);cn be a series of integers with (a;)iey € M
with N =[0:16383] < N, and N;,,M S N .
The LUT is defined by the mapping L: Ny = M, b = a, .

Remarks: b and a,, are the input and resulting output pixel values of the LUT respectively. The mapping

may not necessarily be surjective.

The mathematical definition above as well as Figure 1 show that the LUT must contain 16383 values to
define the mapping for each possible grey value. The values must be integer values within the range

Page 1

” Allied Vision

Using the Goldeye G/CL look-up table
(LUT) for image processing

[0:16383]. However, pixels of different gray input values may be mapped to identical gray output values, for
example a LUT may contain the same value more than once (see Figure 1) or not at all.

Usage of LUTs

The LUT is the last part of the Goldeye image processing chain. Other elements within the image processing
chain are, for instance, the Non-Uniformity Correction (NUC) and the Defective Pixel Correction (DPC).

Therefore the LUT is processed in the full bit depth of 14 bits. Conversion to the 8-bit output pixel format
takes place only after processing of the whole chain including the LUT. For more information about the
image processing chain, refer to the Goldeye technical manual.

LUT features

The LUT is controlled by the GenlCam features shown in .
Figure 2. Use the features as described below. —

= LUTControl

LUTDatasetLoad
LUTDatasetSave
LUTDatasetSelector

To select a LUT data set, enter the LUT number into
LUTDatasetSelector.

To load a data set internally to make it ready for the

. . . LUTEnable
image processing chain, use the command T
LUTDatasetlLoad. LUTSelector
The currently loaded data set is displayed by LUTValue
LUTDatasetActive. LUTValueall

14

14

0
[COMMAND]
[COMMAND]
0

false

0

Luminance
16383

Click here to open

e Toapply the LUT, set LUTEnable true. Figure 2: GenlCam features that

 Find the source (From) defined by the currently loaded control the LUT
LUT in LUTIndex
e Find the target (To) value defined by the currently loaded LUT in LUTValue .

e LUTValueAll is araw (or register) feature to access the corresponding binary data.

Predefined Goldeye LUTs

Predefined Customizable
Goldeye gameras provide four predefined, immutable LUTs, LUT Effect LUT Effect
as shown in Table 1.
The inverting LUT maps each pixel value 1 to 0 IEAES & o)
Jj = 16383 - 1i.The remaining three LUTs apply the listed 1 Gamma1l.16 5 (none)
gamma corrections to the image. 2 Gamma1.18 6 (none)
3 Gamma 1.20 7 (none)

Table 1: LUT factory settings

For the predefined LUTs, the LUTDatasetSave feature is not applicable as the data sets allow read access
only.

For the customizable LUTs, each value may be filled with arbitrary numbers, as described below.

Page 2

https://www.alliedvision.com/en/support/technical-documentation/goldeye-gcl-documentation.html

. L. Using the Goldeye G/CL look-up table
AIIlEd VISIOn (LUT) for image processing

Data structure of a LUT

The LUTs of the Goldeye are given by binary 14-bit values, for example 2 bytes (= 16 bit) for each entry.
Therefore, each LUT has always a constant size of 16384 x 2 bytes = 32768 bytes. The byte order is little
endian: the least significant bytes are stored first, the most significant bytes are stored last. Only the result
values of the LUT table (refer to Figure 1) are saved successively in memory. The From values are given by
the position of the 2 bytes within the binary LUT data, as shown in Figure 3.

Example

This example is marked with blue frames in Figure 3.
e The 10th value of LUT O is 16374, which is the inverted value of 9.
e The hexadecimal value of 16374 is ©x3FF6.

e Because of the little-endianness, the value is stored as F6 3F in the LUT.

A
1
2 16382
3| 16381 o Raw Data Editor <LUTValueAll> - o IEM
4 16380 -
s 16379 File Edit
6 16378 H
7 16377 =
8 16376 DODOIff 3f |fe 3f £d 3f fc 3f fb 3f fa 3f £9 3f £8 3f | .?7.7.2.2.2.2.7.7 g
9 16375 0010 £7 3f[£6 3f|f5 3f £4 3f £3 3f£[f2 3£l 3f £0 3£ | .2.2.2.2.2.2.2.2
wm 0020 ef 3f ee 3f ed 3f ec 3f eb 3f ea 3f e9 3f e8 3f | .7.7.7.72.7.2.72.7
> — 0030 7 3f e6 3f e5 3f ed 3f[e3 3f]e2 3f el 3f e0 3£ | .2.2.2.2.2.2.2.2
0040 df 3f de 3f dd 3f dc 3f db 3f da 3f d9 3f d8 3f | .?2.2.2.2.2.2.7.7
LI 16372 0050 d7 3f d6 3f d5 3f d4 3f d3 3f d2 3f dl 3f dO 3f | .?7.2.2.2.2.2.2.2
13 16371 D060 cf 3f ce 3f cd 3f cc 3f cb 3f ca 3f c® 3f c8 3f | .2.2.2.2.2.2.2.2
11| 16370 0070 c7 3f c6 3f c5 3f c4 3f c3 3f c2 3f cl 3f c0 3£ | .2.2.2.2.2.2.7.7
15 16369 0080 bf 3f be 3f bd 3f bc 3f bb 3f ba 3f b9 3f b8 3f | .2.2.2.2.2.2.2.2
16 16368 0090 b7 3f b6 3f bS 3f b4 3f b3 3f b2 3f bl 3f b0 3f | .?7.2.2.2.2.2.7.72
17 16367 00a0 af 3f ae 3f ad 3f ac 3f ab 3f aa 3f a9 3f a8 3f | .?.2.2.2.72.2.2.7
18 16366 00b0 a7 3f a6 3f a5 3f a4 3f a3 3f a2 3f al 3f a0 3f | .?2.2.2.2.72.2.7.7
19] 16365 00cO 9f 3f 9e 3f 9d 3f 9c 3f 9b 3f 9%9a 3f 99 3f 98 3f | .?2.2.2.2.2.2.7.7
= 16364 00d0 97 3f 96 3f 95 3f 94 3f 93 3f 92 3f 91 3f 90 3f | .?7.2.2.2.2.2.7.7
00e0 B8f 3f 8e 3f 8d 3f B8c 3f 8b 3f 8a 3f 89 3f 88 3f | .?2.2.2.2.2.2.2.7
21 16363 DOLO 87 3f 86 3f 85 3f 84 3f 83 3f 82 3£ 81 3f 80 3f | .2.2.2.2.2.2.2.2
22 16362 0100 7f 3f 7e 3f 7d 3f 7c 3f Tb 3f 7a 3f 79 3f 78 3f | .2~?}7?|2{2z?2v?x?
23 16361 0110 77 3f 76 3f 75 3f 74 3f 73 3f 72 3f 71 3f 70 3f | w?v2u?t?s?r2q?p?
24 16360 0120 6f 3f 6e 3f 6d 3f 6c 3f 6b 3f 6a 3f 69 3f 68 3f o?n?m?l?k?j?i?h?
25 16359 0130 67 3f 66 3f 65 3f 64 3f 63 3f 62 3f 61 3f 60 3f | g?f?e?d?c?b?a?"?
26 16358 0140 Sf 3f Se 3f 5d 3f S5c 3f 5b 3f 5a 3f 59 3f 58 3f | 2°2]?\?[?2Z?Y?X?
27| 16357 0150 57 3f 56 3f 55 3f 54 3f 53 3f 52 3f 51 3f 50 3f | W2V2U?T25?R2Q?P?
28 16356 0160 4f 3f 4e 3f 4d 3f 4c 3f 4b 3f 4a 3f 49 3f 48 3f | O?N?M?L?K?J?I?H? il
N17N 47 =3f 4Ff 3F 45 3F 44 =3F 4% 3F 472 2F 47 =3F 4N 3F RAF2F2NIr2R242@72
= 16333 Address: |0 Isize: | 32768 Mode: | Overwrite
30 16354

Figure 3: Predefined Goldeye LUT No. O (= inversing LUT) in ASCIl and binary representation

Page 3

. o Using the Goldeye G/CL look-up table
A"led VlSlon (LUT) for image processing

Uploading a LUT to the camera

Three ways are available to upload LUT files to the camera

e setthe ASCII LUT value for each index one by one

e upload the binary data at once

e upload the binary data by direct file access.

Set the ASCII LUT value for each index

To set individual ASCII LUT values, follow the steps below.

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Select one of the four user configurable LUTs by setting LUTDatasetSelector to a value
between 4 and 7.

Load the LUT by calling the command LUTDatasetLoad. LUTDatasetActive signals which
LUT is currently loaded within the camera and ready to be applied or modified.

Use LUTIndex (as explained under ,LUT features” on page 2) to define a From value of the
lookup table you would like to modify.

Now you can set the table entry or To value by LUTValue. Repeat this for all LUT entries that
need to be modified.

Finally, save the LUT data set by calling the LUTDatasetSave command.

Compared to the direct binary register access (explained below), this approach takes much longer to write
or read the LUT data.

Upload binary LUT data at once

Step 1:

Step 2:

Step 3:

Select one of the four user configurable LUTs by setting LUTDatasetSelector to a value
between 4 and 7.

Load the LUT by calling the command LUTDatasetLoad. LUTDatasetActive signals which
LUT is currently loaded within the camera and ready to be applied or modified.

You can access the binary data of the LUT by the raw feature (or register) LUTValueAll. This
register access allows to modify the data by direct memory access.

Using the Vimba SDK

In case the Allied Vision Vimba SDK is used, the binary LUT data would be stored in a variable of type
UcharVector of size 32768 (2 bytes for 16384 LUT entries) in little endian byte order. Access the feature as
shown below.

// for the sake of simplicity error handling has been omitted
// start Vimba

VimbaSystem &sys = VimbaSystem::GetInstance();
sys.Startup();

Code Example 1: (sheet 1 of 2)

Page 4

. o Using the Goldeye G/CL look-up table
A"led VISIOn (LUT) for image processing

// get pointers to connected cameras
CameraPtrVector vpCamera;
sys.GetCameras(vpCamera);

// open first cam
vpCamera[@]->0pen(VmbAccessModeFull);

UcharVector LUTdata(32768,0); // vector containing binary LUT data -> 32768 bytes
// in this case all bytes have been initialized to ©

// fill vector with binary LUT data

// ..

FeaturePtr feature; // pointer for feature access

vpCamera[@] ->GetFeatureByName("LUTValueAll", feature); // get feature
feature->SetValue(LUTdata); // upload LUT data

vpCamera[@]->GetFeatureByName("LUTDatasetSave", feature); // get feature
feature-> RunCommand(); // save LUT data

// The data can also be read from the memory by //

vpCamera[0@] - >GetFeatureByName("LUTDatasetLoad", feature); // get feature
feature-> RunCommand(); // load LUT data

vpCamera[@] ->GetFeatureByName("LUTValueAll", feature); // get feature
feature->GetValue(data); // download LUT from camera to UcharVector data

Code Example 1: (sheet 2 of 2)

When finished, save the LUT data set by calling the LUTDatasetSave command. You can also read the
data from the memory using the following command.

feature->GetValue(data); // download LUT from camera to UcharVector data

Upload binary data by direct file access

Uploading binary data by direct file access is done with the help of a small program. You can obtain the
program from the Allied Vision support team. They also will help you with the use of that program. Contact
the Allied Vision support under support@alliedvision.com.

Programming examples

For more information on how to use LUTs with Goldeye cameras, please contact the Allied Vision support
team at support@alliedvision.com. We also offer programming examples on request that shows a basic
implementation of all three LUT access methods mentioned above based on our Vimba SDK.

Page 5

. o Using the Goldeye G/CL look-up table
A”led VISIOn (LUT) for image processing

Copyright and trademarks

All texts, pictures and graphics are protected by copyright and other laws protecting intellectual property.
All content is subject to change without notice.

All trademarks, logos, and brands cited in this document are property and/or copyright material of their
respective owners. Use of these trademarks, logos, and brands does not imply endorsement.

Copyright © 2018 Allied Vision GmbH. All rights reserved.

Page 6

