
APPLICATION NOTE
Using the Goldeye G/CL look-up table (LUT)
for image processing
Page 1
2018-Sep-12
Introduction

This application note explains how to use look-up tables (LUTs) for image processing. The Goldeye camera
family provides four pre-configured and four user-configurable LUT files.

Basics about LUTs

A LUT is used to remap pixel counts. For every possible pixel value (e.g. [0:16383] for 14 bit) within the LUT
a target value exists where the pixel value is mapped to.

The LUT consists of a series ai of 214 (= 16384) count values, therefore the mapping is defined to map each

pixel of value i to value ai.

Expressed in pure mathematically terms: May be a series of integers with

with N	= and .

The LUT is defined by the mapping .

Remarks: and are the input and resulting output pixel values of the LUT respectively. The mapping

may not necessarily be surjective.

The mathematical definition above as well as Figure 1 show that the LUT must contain 16383 values to
define the mapping for each possible grey value. The values must be integer values within the range

Figure 1: LUT applied to a set of pixels

Using the Goldeye G/CL look-up table
(LUT) for image processing
[0:16383]. However, pixels of different gray input values may be mapped to identical gray output values, for
example a LUT may contain the same value more than once (see Figure 1) or not at all.

Usage of LUTs

The LUT is the last part of the Goldeye image processing chain. Other elements within the image processing
chain are, for instance, the Non-Uniformity Correction (NUC) and the Defective Pixel Correction (DPC).

Therefore the LUT is processed in the full bit depth of 14 bits. Conversion to the 8-bit output pixel format
takes place only after processing of the whole chain including the LUT. For more information about the
image processing chain, refer to the Goldeye technical manual.

For the predefined LUTs, the LUTDatasetSave feature is not applicable as the data sets allow read access
only.

For the customizable LUTs, each value may be filled with arbitrary numbers, as described below.

LUT features

The LUT is controlled by the GenICam features shown in
Figure 2. Use the features as described below.

• To select a LUT data set, enter the LUT number into
LUTDatasetSelector.

• To load a data set internally to make it ready for the
image processing chain, use the command
LUTDatasetLoad.

• The currently loaded data set is displayed by
LUTDatasetActive.

• To apply the LUT, set LUTEnable true.

• Find the source (From) defined by the currently loaded
LUT in LUTIndex

Figure 2: GenICam features that
control the LUT

• Find the target (To) value defined by the currently loaded LUT in LUTValue .

• LUTValueAll is a raw (or register) feature to access the corresponding binary data.

Predefined Goldeye LUTs

Goldeye cameras provide four predefined, immutable LUTs,
as shown in Table 1.

The inverting LUT maps each pixel value i to
j = 16383 - i. The remaining three LUTs apply the listed
gamma corrections to the image.

 Predefined Customizable

 LUT Effect LUT Effect

0 Inverting 4 (none)

1 Gamma 1.16 5 (none)

2 Gamma 1.18 6 (none)

3 Gamma 1.20 7 (none)

Table 1: LUT factory settings
Page 2

https://www.alliedvision.com/en/support/technical-documentation/goldeye-gcl-documentation.html

Using the Goldeye G/CL look-up table
(LUT) for image processing
Data structure of a LUT

The LUTs of the Goldeye are given by binary 14-bit values, for example 2 bytes (= 16 bit) for each entry.
Therefore, each LUT has always a constant size of 16384 x 2 bytes = 32768 bytes. The byte order is little
endian: the least significant bytes are stored first, the most significant bytes are stored last. Only the result
values of the LUT table (refer to Figure 1) are saved successively in memory. The From values are given by
the position of the 2 bytes within the binary LUT data, as shown in Figure 3.

Example

This example is marked with blue frames in Figure 3.

• The 10th value of LUT 0 is 16374, which is the inverted value of 9.

• The hexadecimal value of 16374 is 0x3FF6.

• Because of the little-endianness, the value is stored as F6 3F in the LUT.

Figure 3: Predefined Goldeye LUT No. 0 (= inversing LUT) in ASCII and binary representation
Page 3

Using the Goldeye G/CL look-up table
(LUT) for image processing
Uploading a LUT to the camera

Three ways are available to upload LUT files to the camera

• set the ASCII LUT value for each index one by one

• upload the binary data at once

• upload the binary data by direct file access.

Set the ASCII LUT value for each index

To set individual ASCII LUT values, follow the steps below.

Step 1: Select one of the four user configurable LUTs by setting LUTDatasetSelector to a value
between 4 and 7.

Step 2: Load the LUT by calling the command LUTDatasetLoad. LUTDatasetActive signals which
LUT is currently loaded within the camera and ready to be applied or modified.

Step 3: Use LUTIndex (as explained under „LUT features“ on page 2) to define a From value of the
lookup table you would like to modify.

Step 4: Now you can set the table entry or To value by LUTValue. Repeat this for all LUT entries that
need to be modified.

Step 5: Finally, save the LUT data set by calling the LUTDatasetSave command.

Compared to the direct binary register access (explained below), this approach takes much longer to write
or read the LUT data.

Upload binary LUT data at once

Step 1: Select one of the four user configurable LUTs by setting LUTDatasetSelector to a value
between 4 and 7.

Step 2: Load the LUT by calling the command LUTDatasetLoad. LUTDatasetActive signals which
LUT is currently loaded within the camera and ready to be applied or modified.

Step 3: You can access the binary data of the LUT by the raw feature (or register) LUTValueAll. This
register access allows to modify the data by direct memory access.

Using the Vimba SDK

In case the Allied Vision Vimba SDK is used, the binary LUT data would be stored in a variable of type
UcharVector of size 32768 (2 bytes for 16384 LUT entries) in little endian byte order. Access the feature as
shown below.

// for the sake of simplicity error handling has been omitted

// start Vimba

VimbaSystem &sys = VimbaSystem::GetInstance();

sys.Startup();

Code Example 1: (sheet 1 of 2)
Page 4

Using the Goldeye G/CL look-up table
(LUT) for image processing
When finished, save the LUT data set by calling the LUTDatasetSave command. You can also read the
data from the memory using the following command.

Upload binary data by direct file access

Uploading binary data by direct file access is done with the help of a small program. You can obtain the
program from the Allied Vision support team. They also will help you with the use of that program. Contact
the Allied Vision support under support@alliedvision.com.

Programming examples

For more information on how to use LUTs with Goldeye cameras, please contact the Allied Vision support
team at support@alliedvision.com. We also offer programming examples on request that shows a basic
implementation of all three LUT access methods mentioned above based on our Vimba SDK.

// get pointers to connected cameras

CameraPtrVector vpCamera;

sys.GetCameras(vpCamera);

// open first cam

vpCamera[0]->Open(VmbAccessModeFull);

UcharVector LUTdata(32768,0); // vector containing binary LUT data -> 32768 bytes

// in this case all bytes have been initialized to 0

// fill vector with binary LUT data

// …

FeaturePtr feature; // pointer for feature access

vpCamera[0]->GetFeatureByName("LUTValueAll", feature); // get feature

feature->SetValue(LUTdata); // upload LUT data

vpCamera[0]->GetFeatureByName("LUTDatasetSave", feature); // get feature

feature-> RunCommand(); // save LUT data

// The data can also be read from the memory by //

vpCamera[0]->GetFeatureByName("LUTDatasetLoad", feature); // get feature

feature-> RunCommand(); // load LUT data

vpCamera[0]->GetFeatureByName("LUTValueAll", feature); // get feature

feature->GetValue(data); // download LUT from camera to UcharVector data

feature->GetValue(data); // download LUT from camera to UcharVector data

Code Example 1: (sheet 2 of 2)
Page 5

Using the Goldeye G/CL look-up table
(LUT) for image processing
Copyright and trademarks

All texts, pictures and graphics are protected by copyright and other laws protecting intellectual property.
All content is subject to change without notice.

All trademarks, logos, and brands cited in this document are property and/or copyright material of their
respective owners. Use of these trademarks, logos, and brands does not imply endorsement.

Copyright © 2018 Allied Vision GmbH. All rights reserved.
Page 6

